Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying.

نویسندگان

  • Alex Kutana
  • Evgeni S Penev
  • Boris I Yakobson
چکیده

Binary alloys present a promising venue for band gap engineering and tuning of other mechanical and electronic properties of materials. Here we use the density-functional theory and cluster expansion to investigate the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide (TMD) binary alloys. We find that mixing electron-accepting or electron-donating transition metals with 2D TMD semiconductors leads to degenerate p- or n-doping, respectively, effectively rendering them metallic. We then proceed to investigate the electronic properties of semiconductor-semiconductor alloys. The exploration of the configurational space of the 2D molybdenum-tungsten disulfide (Mo1-xWxS2) alloy beyond the mean field approximation yields insights into anisotropy of the electron and hole effective masses in this material. The effective hole mass in the 2D Mo1-xWxS2 is nearly isotropic and is predicted to change almost linearly with the tungsten concentration x. In contrast, the effective electron mass shows significant spatial anisotropy. The values of the band gap in 2D Mo1-xWxS2 and MoSe2(1-x)S2x are found to be configuration-dependent, exposing the limitations of the mean field approach to band gap analysis in alloys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1-xXxS2-ySey with X = W, Nb

Layered transition-metal dichalcogenides have extraordinary electronic properties, which can be easily modified by various means. Here, we have investigated how the stability and electronic structure of MoS2 monolayers is influenced by alloying, i.e., by substitution of the transition metal Mo by W and Nb and of the chalcogen S by Se. While W and Se incorporate into the MoS2 matrix homogeneousl...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers

The alloying behaviour of materials is a well-known problem in all kinds of compounds. Revealing the heteroatomic distributions in two-dimensional crystals is particularly critical for their practical use as nano-devices. Here we obtain statistics of the homo- and heteroatomic coordinates in single-layered Mo(1-x)W(x)S(2) from the atomically resolved scanning transmission electron microscope im...

متن کامل

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.

Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-t...

متن کامل

Two-dimensional transition metal dichalcogenide (TMD) nanosheets.

This special issue is about two-dimensional transitionmetal dichalcogenides (2DTMDs), a family of materials consisting of over 40 compounds with the generalized formula of MX2, where M is a transition metal typically from groups 4–7, and X is a chalcogen such as S, Se or Te. Bulk TMDs have been widely studied over several decades because it is possible to formulate compounds with disparate elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2014